

久留米大学医学部(前期) 数学

2025年2月1日実施

1.

(1) x, y, a, b を正の実数とする。

$$a^x = b^y = \sqrt{ab}$$

を満たしているとき,a,b の値によらず, $\frac{1}{x}+\frac{1}{y}=$ $\boxed{\mathcal{P}}$ となる。また, $\left(\frac{1}{x}+\frac{1}{y}\right)(4x+y)$ の最小

値は イ である。

(2) x, y, z, a, b, c を正の実数とする。

$$a^x b^y = b^y c^z = c^z a^x = abc$$

を満たしているとき, x+4y+z は (x, y, z)=(ケ , コ , サ) において最小値 シ をとる。

解答

解答記号	正解	
ア	2	
1	9	
<u>ウ</u> , <u>オ</u> エ, カ	$\frac{3}{4}, \frac{3}{2}$	
<u>キ</u> ク	9 2	
ケ, コ, サ	2, 1, 2	
シ	8	

解説

(1) x, y, a, b が正の実数であることに注意しておく. $a^x = b^y = \sqrt{ab}$ の辺々の自然対数をとると

$$x\log a = y\log b = \frac{1}{2}\log ab$$

これより
$$\frac{1}{x} = \frac{2\log a}{\log ab}$$
, $\frac{1}{y} = \frac{2\log b}{\log ab}$ と表されるので

$$\frac{1}{x} + \frac{1}{y} = \frac{2\log a}{\log ab} + \frac{2\log b}{\log ab} = \frac{2\log ab}{\log ab} = \mathbf{2}$$

となる. 次に

$$\left(\frac{1}{x} + \frac{1}{y}\right)(4x + y) = 5 + \frac{y}{x} + \frac{4x}{y} \quad \cdots \quad \bigcirc$$

であり、相加平均と相乗平均の関係より

$$\frac{y}{x} + \frac{4x}{y} \ge 2\sqrt{\frac{y}{x} \cdot \frac{4x}{y}} = 4$$

が成り立つ. 等号は $\frac{y}{x}=\frac{4x}{y}$, すなわち y=2x のとき成り立つ. これと ① より,

$$\left(\frac{1}{x} + \frac{1}{y}\right)(4x + y) \ge 9 \quad \cdots \ 2$$

となる。また, $\frac{1}{x}+\frac{1}{y}=2$ であるから,② から $4x+y\geq \frac{9}{2}$ が成り立つ。 $\frac{1}{x}+\frac{1}{y}=2$ と y=2x の連立を解くことにより $(x,\ y)=\left(\frac{3}{4},\ \frac{3}{2}\right)$ が得られる。したがって $\left(\frac{1}{x}+\frac{1}{y}\right)(4x+y)$ の最小値は $\mathbf 9$ であり,このとき 4x+y は最小値 $\frac{9}{2}$ をとる。

(2) x, y, z, a, b, c が正の実数であることに注意しておく. $a^x b^y = b^y c^z \text{ より } a^x = c^z \text{ がわかり}, \ b^y c^z = c^z a^x \text{ より } b^y = a^x \text{ がわかる}. \text{ さらに } a^x b^y = b^y c^z = c^z a^x = abc$ より $a^x = b^y = c^z = \sqrt{abc}$ がわかる. これらの辺々に対して自然対数をとることにより

$$\frac{1}{x} = \frac{2\log a}{\log abc}, \quad \frac{1}{y} = \frac{2\log b}{\log abc}, \quad \frac{1}{z} = \frac{2\log c}{\log abc}$$

が成り立つ. したがって

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{2(\log a + \log b + \log c)}{\log abc} = 2$$

となる。一方

$$\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)(x+4y+z) = 6 + \left(\frac{4y}{x} + \frac{x}{y}\right) + \left(\frac{z}{y} + \frac{4y}{z}\right) + \left(\frac{x}{z} + \frac{z}{x}\right) \quad \cdots \quad 3$$

であり、相加平均と相乗平均の関係より

$$\frac{4y}{x} + \frac{x}{y} \ge 2\sqrt{\frac{4y}{x} \cdot \frac{x}{y}} = 4$$

$$\frac{z}{y} + \frac{4y}{z} \ge 2\sqrt{\frac{z}{y} \cdot \frac{4y}{z}} = 4$$

$$\frac{x}{z} + \frac{z}{x} \ge 2\sqrt{\frac{x}{z} \cdot \frac{z}{x}} = 2$$

である。等号はそれぞれ $\frac{4y}{x}=\frac{x}{y}\iff x=2y,\ \frac{z}{y}=\frac{4y}{z}\iff z=2y,\ \frac{x}{z}=\frac{z}{x}\iff x=z$ のとき成り立つので、すべての等号が同時に成り立つのは x=2y=z のときである。これと ③ より、

$$\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)(x+4y+z) \ge 6+4+4+2 = 16$$

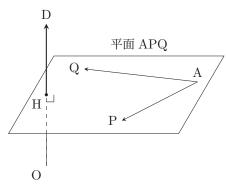
が成り立つ

また, $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$ であるから, $x+4y+z\geq 8$ が成り立つ. $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$ と x=2y=z の連立を解くことにより $(x,\ y,\ z)=(\mathbf{2},\ \mathbf{1},\ \mathbf{2})$ が得られるので,このとき x+4y+z は最小値 $\mathbf{8}$ をとる.

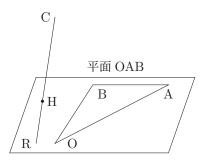
2.

1 辺の長さが 1 の正四面体 OABC があり、 OB の中点を P 、OC を 1 : 2 に内分する点を Q とする。また $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ 、 $\overrightarrow{OC} = \overrightarrow{c}$ とする。次の問いに答えよ。

- (2) 平面 APQ 上の点 H について OH は平面 APQ と垂直であるとする。このとき, $\overrightarrow{OH} = -\frac{\overrightarrow{r}}{10} \xrightarrow{a} + \frac{\overrightarrow{r}}{10} \xrightarrow{b} + \frac{\overrightarrow{r}}{10} \xrightarrow{c}$ である。



さらに、直線 CH と平面 OAB の交点を R とすると、 $\overrightarrow{OR} = \frac{1}{\square} \overrightarrow{AB}$ となり、OR と AB は平行であることがわかる。



解答

解答記号	正解		
ス	1		
<u>ス</u> セ	2		
ソ	1		
タ	3		
チ	9		
ツ	2		
テ,ト,ナ	1, 1, 3		
=	7		

解説

$$(1) \quad \overrightarrow{\mathrm{AP}} = \overrightarrow{\mathrm{OP}} - \overrightarrow{\mathrm{OA}} = \frac{\mathbf{1}}{\mathbf{2}} \overrightarrow{b} - \overrightarrow{a}, \ \overrightarrow{\mathrm{AQ}} = \overrightarrow{\mathrm{OQ}} - \overrightarrow{\mathrm{OA}} = \frac{\mathbf{1}}{\mathbf{3}} \overrightarrow{c} - \overrightarrow{a} \ \text{TBS}. \quad \sharp \mathcal{T},$$

$$\overrightarrow{\mathrm{OD}} = x \overrightarrow{a} + y \overrightarrow{\mathrm{OP}} + z \overrightarrow{\mathrm{OQ}}$$
$$= x \overrightarrow{a} + \frac{1}{2} y \overrightarrow{b} + \frac{1}{3} z \overrightarrow{c}$$

であるから, $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = 1$, $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = \frac{1}{2}$ であることに注意すると,

$$\overrightarrow{\mathrm{OD}} \cdot \overrightarrow{\mathrm{AP}} = 0$$

$$\iff \left(x \overrightarrow{a} + \frac{1}{2} y \overrightarrow{b} + \frac{1}{3} z \overrightarrow{c} \right) \cdot \left(\frac{1}{2} \overrightarrow{b} - \overrightarrow{a} \right) = 0$$

$$\iff -\frac{3}{4} x - \frac{1}{12} z = 0$$

$$\iff \frac{z}{x} = -9 \cdots 1$$

である. さらに

$$\overrightarrow{OD} \cdot \overrightarrow{AQ} = 0$$

$$\iff \left(\overrightarrow{x} \overrightarrow{a} + \frac{1}{2} \overrightarrow{y} \overrightarrow{b} + \frac{1}{3} \overrightarrow{z} \overrightarrow{c} \right) \cdot \left(\frac{1}{3} \overrightarrow{c} - \overrightarrow{a} \right) = 0$$

$$\iff -\frac{5}{6} x - \frac{1}{6} y - \frac{1}{18} z = 0$$

において $\frac{z}{x} = -9 \iff z = -9x$ を代入すると

$$-\frac{1}{3}x - \frac{1}{6}y = 0 \iff \frac{y}{x} = -2\cdots 2$$

となる.

(2) (1) と同様に

$$\overrightarrow{OH} = x\overrightarrow{a} + y\overrightarrow{OP} + z\overrightarrow{OQ} \cdots 3$$

$$= x\overrightarrow{a} + \frac{1}{2}y\overrightarrow{b} + \frac{1}{3}z\overrightarrow{c}$$

とおくと, 点 H が平面 APQ 上の点であるとき, ③ において

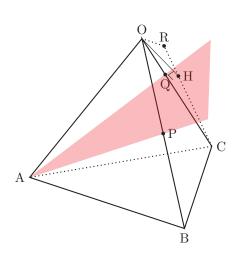
$$x + y + z = 1 \cdot \cdot \cdot \cdot \textcircled{4}$$

が成り立ち、さらに OH が平面 APQ と垂直であるとき (1) より ①、② も成り立つので、 ①、②、④ を解いて

$$(x, y, z) = \left(-\frac{1}{10}, \frac{1}{5}, \frac{9}{10}\right)$$
 が得られる.

したがって, $\overrightarrow{OH} = -\frac{1}{10}\overrightarrow{a} + \frac{1}{10}\overrightarrow{b} + \frac{3}{10}\overrightarrow{c}$ である.次に,点 R は直線 CH 上の点であるから

$$\overrightarrow{OR} = t\overrightarrow{OH} + (1-t)\overrightarrow{OC}$$



$$\begin{split} &= t \left(-\frac{1}{10} \overrightarrow{a} + \frac{1}{10} \overrightarrow{b} + \frac{3}{10} \overrightarrow{c} \right) + (1-t) \overrightarrow{c} \\ &= -\frac{1}{10} t \overrightarrow{a} + \frac{1}{10} t \overrightarrow{b} + \left(1 - \frac{7}{10} t \right) \overrightarrow{c} \end{split}$$

とかける.ここで,点 R が平面 OAB 上の点であるとき, $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$, $\stackrel{\rightarrow}{c}$ は一次独立であるから $\stackrel{\rightarrow}{c}$ の係数は 0 , すなわち $t=\frac{10}{7}$ であることがわかるので,

$$\overrightarrow{OR} = -\frac{1}{7}\overrightarrow{a} + \frac{1}{7}\overrightarrow{b} = \frac{1}{7}\overrightarrow{AB}$$

となる.

注釈

$$\begin{split} \overrightarrow{\mathrm{OH}} &= -\frac{1}{10} \overrightarrow{a} + \frac{1}{10} \overrightarrow{b} + \frac{3}{10} \overrightarrow{c} \\ &= \frac{7}{10} \left(-\frac{1}{7} \overrightarrow{a} + \frac{1}{7} \overrightarrow{b} \right) + \frac{3}{10} \overrightarrow{\mathrm{OC}} \end{split}$$

と変形することにより, $\overrightarrow{OR} = -\frac{1}{7} \overrightarrow{a} + \frac{1}{7} \overrightarrow{b}$ を得ることも可能である.

3.

- (2) 4 次関数 $g(x) = 3x^4 8x^3 + 12x$ について、以下の問いに答えよ。

 - (ii) g(x) は x= ホー において極大値 マー , x= $\frac{ { z} \pm \sqrt{ \bot}}{2}$ において極小値 $\frac{ * }{2}$ をとる。ただし,複号同順である。
- (iii) y=g(x) において,極値をとるグラフ上の 3 点を P, Q, R とする。これらの 3 点をすべて通り,軸が y 軸に平行な放物線の方程式は y=- ユ x^2+ ヨ x+ ラ である。

解答

解答記号	正解	
ヌ, ネ	1, 3	
ノ, ハ	1, 1	
ヒ,フ,へ	4, 9, 2	
ホ	1	
マ	7	
$\xi \pm \sqrt{\Delta}$	$1\pm\sqrt{5}$	
$m{ imes} \pm m{ imes} \sqrt{m{ au}}$	$1\pm5\sqrt{5}$	
ユ, ヨ, ラ	4, 9, 2	

解説

(1) $f(x) = 4x^3 + 9x^2 + 6x + 3$ より、 $f'(x) = 12x^2 + 18x + 6 = 6(2x+1)(x+1)$ であるので、増減表は以下のようになる.

x		-1		$-\frac{1}{2}$	
f'(x)	+	0	_	0	+
f(x)	7	2	¥	$\frac{7}{4}$	7

したがって、直線 AB は 2 点 (-1, 2)、 $\left(-\frac{1}{2}, \frac{7}{4}\right)$ を通るので、 $y = -\frac{1}{2}x + \frac{3}{2}$ である.

- (2) (i) $g(x) = 3x^4 8x^3 + 12x$ より, $g'(x) = 12x^3 24x^2 + 12$ であるので,g(x) を g'(x) で割ったときの商は $\frac{1}{4}x \frac{1}{6}$,余りは $-4x^2 + 9x + 2$ である.
 - (ii) $g'(x) = 12(x-1)(x^2-x-1)$ であるので、増減表は以下のようになる.

$$(\alpha = \frac{1-\sqrt{5}}{2}, \ \beta = \frac{1+\sqrt{5}}{2}$$
 とする)

x		α		1		β	
g'(x)	_	0	+	0	_	0	+
g(x)	×	$g(\alpha)$	7	7	×	$g(\beta)$	7

ここで, $g(x) = (3x-2)(x^3-2x^2+1)-4x^2+9x+2$ であり, α , β は $x^2-x-1=0$ の解である(つまり $x^3-2x^2+1=0$ の解でもある)ので, $\alpha^3-2\alpha^2+1=0$, $\alpha^2-\alpha-1=0$ を満たす (β も同様). したがって,

$$g(\alpha) = -4\alpha^2 + 9\alpha + 2 = -4(\alpha + 1) + 9\alpha + 2 = 5\alpha - 2 = \frac{1 - 5\sqrt{5}}{2}$$

同様に, $g(\beta) = \frac{1+5\sqrt{5}}{2}$ を得る. 以上より,

$$x=1$$
 において極大値 7 , $\qquad x=rac{1\pm\sqrt{5}}{2}$ において極小値 $rac{1\pm5\sqrt{5}}{2}$ (複号同順)

をとる.

(iii) 求める放物線は 3 点 $(1,\ g(1)),\ (\alpha,\ g(\alpha)),\ (\beta,\ g(\beta))$ を通るものである.

(2) より

$$g(x) = g'(x) \left(\frac{1}{4}x - \frac{1}{6}\right) - 4x^2 + 9x + 2$$

であるが、 $g'(1)=g'(\alpha)=g'(\beta)=0$ なので、上式に $x=1,\ \alpha,\ \beta$ を代入すると

$$g(1) = -4 \cdot 1^2 + 9 \cdot 1 + 2$$

$$q(\alpha) = -4\alpha^2 + 9\alpha + 2$$

$$q(\beta) = -4\beta^2 + 9\beta + 2$$

となる. これは、放物線 $y = -4x^2 + 9x + 2$ が 3 点 (1, g(1)), $(\alpha, g(\alpha))$, $(\beta, g(\beta))$ を通ることを意味するので、これが求める放物線である.

4. 動物高校に通うウサギとクマの会話である。 ウサギ:従兄弟の子供が中学受験をするというので、問題集をやっていたんだ。
1 より大きな数(小学生だから正の整数)があります。次の操作 T を考えます。 操作 T : 「数が 2 の倍数のときは 2 で割り,2 の倍数でないときは 1 を足す。」 この操作 T を繰り返すと,いつか 1 になります。初めて 1 になったら,そこでやめます。 たとえば最初が 5 ならば,1 を足して 6 になり,2 で割ると 3 になり,次は 1 を足して 4 になり,次は 2 で 割って 2 になり,次は 2 で割って 1 になります。これを次のようにかくことにします。
$5 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 1$
では、
$\boxed{\text{III}} \rightarrow \boxed{\text{II}} \rightarrow \boxed{\text{I}} \rightarrow 2 \rightarrow 1$
となるとき,空欄にはどんな数が入るでしょうか? すべて答えなさい。
クマ: I は4が入るね。Tが「2で割るか、1を加える」だから、Tの逆操作は「2倍するか、1を引く」で、 II は「 I の2倍、または I から1を引いたもの」だから、「8または3」だね。 (1) III に入ることができる数は リ 個ある。 クマ: ちょうど n 回で操作が終了する数はいくつあるんだろう。 ウサギ: 塾で「n 回で、場合の数の問題で、すぐに求められないなら、漸化式を立てる」と習った。やってみよう。うん、これ、一般項に無理数が出るパターンだ。無理数が出ないように問題を変更しよう。 操作 U: 「1 より大きな正の整数があるとき、それが c の倍数ならば、c で割る。それが c の倍数でなければ、
$1, 2, 3, \cdots, c-1$ のうちの 1 つの数を加えて c の倍数になるようにする。」 これを繰り返して初めて 1 になったらやめる。一番初めの数を N として, n 回の操作でやめるような N が a_n 個あるとする。 $c=2$ なら最初の問題と同じになるから, $a_1=1, a_2=1, a_3=2$ になるってわけだ。 ク マ:塾の先生は「後の方でタイプ分けする」か「最初でタイプ分けする」と言っていたね。最初でタイプ分けして
みよう。 n 回で操作が終了する a_n 個の N のうち, N が c の倍数のものは『1 回目に c で割る』から,あと $n-1$ 回で終了するので, a_{n-1} 個あるね。 N が c の倍数でないものは, \mathbb{R}^n が c で割って余りが $c-1$ なら,1 回目に 1 を加えて c の倍数にして(これで 1 回の操作),次に c で割る(これが 2 回目の操作)』, または『1 回目に 2 を加えて c の倍数にして,次に c で割る」, , または『1 回目に $c-1$ を加えて c の倍数にして,次に c で割る」, というタイプがある。これらは,今の時点で 2 回操作しているから,あと \mathbb{R}^n 回で終了するね。
ウサギ:だから $n \geq 3$ として $a_n = a_{n-1} + luebox{ }luebox{ }luebo$
(2) ν ,
ワ $c = (2k+1)^2 $ の形でかけるときである。このとき, $c=k^2+k+$ となる。
特に、この $k=2$ のときは、 $a_2=6$ 、 $a_n=\frac{1}{ $ あ $ } \left($

となる。

解答

解答記号	正解
IJ	3
ル	2
V	4
	2
ワ c — ヲ	4c - 3
ン	1
$\frac{1}{\overline{\mathfrak{B}}}\left(W\cdot\check{\mathfrak{I}}^{n-1}-\check{z}\cdot\left(-\check{B}\right)^{n-1}\right)$	$\frac{1}{5} \left(8 \cdot 3^{n-1} - 3 \cdot (-2)^{n-1} \right)$

解説

- (1) $\boxed{\text{II}}$ に 3 が入っていた場合, $\boxed{\text{III}}$ に入っていた数が 6 となる.
 - $\boxed{\text{II}}$ に 8 が入っていた場合, $\boxed{\text{III}}$ に入っていた数が 16 または 7 となる.

以上により、III に入ることができる数は 6, 7, 16 の **3** 個ある.

- (2) n 回の操作で終了させるため,先に 2 回の操作が済んでいることから,あと n-2 回で終了することになる. n 回の操作で終了する場合は,元の数 N を次のように 2 種類に場合分けして考えられる.
 - (i) N が c の倍数であるとき

「1回目にN をcで割る」という操作を行い、これ以降はn-1回の操作によって終了する.

(ii) N が c の倍数ではないとき

N を c で割ったときの余りを k とすると,k の値は $k=1,\ 2,\ \cdots,\ c-1$ の c-1 通りあるので,「1 回目 に N に c-k を加えて c の倍数にし,2 回目に c で割る」という操作も c-1 通りある.そして,これ以降 の n-2 回の操作によって終了する.

(i) の場合の N は a_{n-1} 個あることになり、(ii) の場合の N は $(c-1) \times a_{n-2}$ 個あることになるので、

$$a_n = a_{n-1} + (c-1)a_{n-2} \ (n \ge 3) \ \cdots \$$

が成り立つ.

(3) 方程式 $x^2-x-(c-1)=0$ の解は $x=\frac{1\pm\sqrt{4c-3}}{2}$ と表されるので、4c-3 が奇数の平方数となるとき に整数解となる。このとき、0 以上の整数 k を用いて $4c-3=(2k+1)^2$ と表される。よって、 $c=k^2+k+1$ となる。

この結果から, k=2 であるときは c=7 になるから, 漸化式 $ext{ } ext{ } ext$

$$a_{n+2} = a_{n+1} + 6a_n \ (n \ge 1), \ a_1 = 1, \ a_2 = 6 \ \cdots$$

として解くことにする.

A から $a_{n+2} + 2a_{n+1} = 3(a_{n+1} + 2a_n)$ が得られるので、

$$a_{n+1} + 2a_n = (a_2 + 2a_1) \cdot 3^{n-1} = 8 \cdot 3^{n-1} \cdots \bigcirc$$

$$a_{n+1} - 3a_n = (a_2 - 3a_1) \cdot (-2)^{n-1} = 3 \cdot (-2)^{n-1} \cdots \bigcirc$$

$$(①-②)\div 5 により, \ a_n = \frac{1}{\mathbf{5}}(\mathbf{8}\cdot\mathbf{3}^{n-1} - \mathbf{3}\cdot(-\mathbf{2})^{n-1}) となる.$$

5. xyz 空間において、半径 1 の球 D の中心が xy 平面上の 4 つの線分

$$\begin{cases} y = 0 \ (-5 \le x \le 5) \\ x = 0 \ (-5 \le y \le 5) \\ y = x \ (-5 \le x \le 5) \\ y = -x \ (-5 \le x \le 5) \end{cases}$$

上を動くとする。このとき、球Dの通過する部分をWとおく。

(1) 平面 z=t $(-1 \le t \le 1)$ における, W の断面積を S(t) とおくと,

$$S(t) = \boxed{\text{th}} \left\{ 10 \left(\boxed{\text{ਦ}} + \sqrt{\boxed{\zeta}} \right) \sqrt{1-t^2} - \left(\boxed{\text{tf}} + \boxed{\text{c}} \sqrt{\boxed{\zeta}} - \pi \right) (1-t^2) \right\}$$

である。

(2) W の体積を V とおくと,

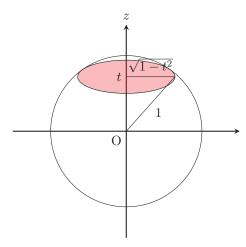
である。

解答

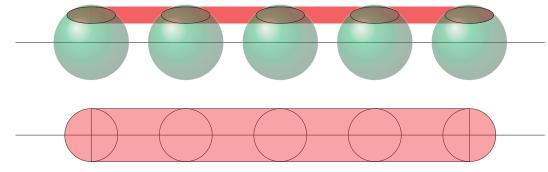
正解
$4\{10(1+\sqrt{2})\sqrt{1-t^2}$
$-(2+2\sqrt{2}-\pi)(1-t^2)$
$\left(\frac{76}{3} + 20\sqrt{2}\right)\pi$ $-\frac{32}{3}\left(1 + \sqrt{2}\right)$

解説

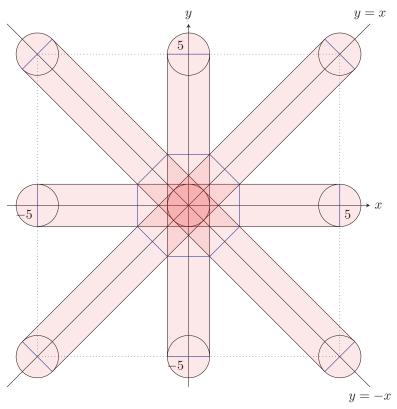
(1) 半径が 1 で中心が xy 平面上にある球を平面 z=t で切断した断面は,下図の通り,半径が $\sqrt{1-t^2}$ の円となる.



よって,この球の中心が xy 平面上の線分上を動いたとき,球の通過領域を平面 z=t で切断した断面は,下 図の通り,長方形と 2 つの半円からなる.



よって,球 D が 4 つの線分上を動いたときの球 D の通過する部分 W を,平面 z=t で切断した断面図は以下の図のようになる.



求める面積は

- 一辺の長さが $2\sqrt{1-t^2}$ の正八角形が 1 つ
- 縦が $2\sqrt{1-t^2}$ で横が $5-(1+\sqrt{2})\sqrt{1-t^2}$ の長方形が 4 つ
- 縦が $2\sqrt{1-t^2}$ で横が $5\sqrt{2}-(1+\sqrt{2})\sqrt{1-t^2}$ の長方形が 4 つ,
- 半径が $\sqrt{1-t^2}$ の半円が 8 つ の合計である. したがって,

$$\begin{split} S(t) &= (8 + 8\sqrt{2})(1 - t^2) \\ &+ 2\sqrt{1 - t^2} \{5 - (1 + \sqrt{2})\sqrt{1 - t^2}\} \cdot 4 \\ &+ 2\sqrt{1 - t^2} \{5\sqrt{2} - (1 + \sqrt{2})\sqrt{1 - t^2}\} \cdot 4 \\ &+ \frac{\pi(1 - t^2)}{2} \cdot 8 \\ &= 4\{10(1 + \sqrt{2})\sqrt{1 - t^2} - (2 + 2\sqrt{2} - \pi)(1 - t^2)\} \end{split}$$

となる.

(2)

$$V = \int_{-1}^{1} S(t) dt$$

であるが,

$$\int_{-1}^{1} \sqrt{1 - t^2} \, dt = \frac{\pi}{2}$$

$$\int_{-1}^{1} (1 - t^2) \, dt = \left[t - \frac{t^3}{3} \right]_{-1}^{1} = \frac{4}{3}$$

より,

$$V = 4 \left\{ 10(1 + \sqrt{2}) \cdot \frac{\pi}{2} - (2 + 2\sqrt{2} - \pi) \cdot \frac{4}{3} \right\}$$
$$= \left(\frac{76}{3} + 20\sqrt{2} \right) \pi - \frac{32}{3} (1 + \sqrt{2})$$

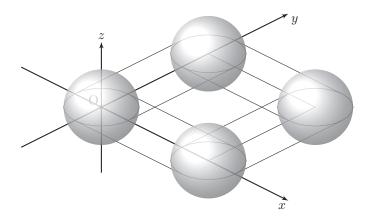
である.

2024-25年 冬期講習テキスト

問題 8-13

- (1) 平面で,辺の長さが 4 の正方形の辺に沿って,半径 $r\ (r\le 1)$ の円の中心が 1 周するとき,この円が 通過する部分の面積 S(r) を求めよ.
- (2) 空間で,辺の長さが 4 の正方形の辺に沿って,半径 1 の球の中心が 1 周するとき,この球が通過する 部分の体積 V を求めよ.

【参考図】



講評

1. [数と式] (標準~やや難)

相加平均と相乗平均の関係を利用して最小値を求める問題. (1) は誘導が丁寧なので正解したい. (2) は (1) の流れ に沿って処理していけばよいが、少々難度が高い.

2. 「空間ベクトル」 (標準)

正四面体において、平面に下ろした垂線や、直線と平面の交点について考える問題、やや計算が重いが、定番の処 理なので何とか完答をねらいたい.

3. 「数学Ⅱの微積分」(標準~やや難)

3次関数, 4次関数について増減, 極値を調べる問題. (2)(ii) までは正解が望まれる. 最後の (iii) はやや高度だが、 マーク形式なのでカンで正解できた受験生もいるだろう.

4. [場合の数と数列] (やや難)

ここ数年、推薦入試で出題されていた共通テストを思わせるような会話文による問題、丁寧に文章を読めば詳しく 誘導してくれているのだが、題材自体がやや難しい上に文章量も多いので、最後まで解ききるのは辛いだろう。

5. 「数学Ⅲの積分」(やや難)

球の通過領域の、断面積と体積を求める問題、断面積さえ求められれば、体積は積分するだけなので容易いが、 z=t による断面の形状がやや複雑で、断面積を求めにくい問題だった。

2024年度前期と比較して、問題の分量が増え、難易度も上がり、得点しにくくなっている。かつては必ず完答すべ き問題がいくつか含まれることが多かったが、ここ数年はそのレベルの問題がほぼない.その中でも今回のセットは 得点しにくい方といってよい.大問2を何とか完答して,大問1,3,4でどれだけ立ち回れたかの勝負だろう.目標 は 45%.

解答・講評作成 医学部進学予備校メビオ

メルマガ無料登録で全教科配信! 本解答速報の内容に関するお問合せは··· メビオ 🚾 0120-146-156 まで

0120-146-156 https://www.mebio.co.jp/

英進館メビオ 福岡校

2 03-3370-0410 https://yms.ne.jp/

55 0120-192-215

諦めない受験生をメビオは応援します!

医学部後

ガイダン

2/13 近畿大 2/19 金沢医 科大 2/20 昭和大学 医 2/23 聖マリアンナ医科ス

医学部進学予備校 メビオ 📆 0120-146-156

校舎にて個別説明会も随時開催しています。 【受付時間】9:00~21:00 (土日祝可)